Invariants of Hamiltonian Flow on Locally Complete Intersections
نویسنده
چکیده
We consider the Hamiltonian flow on complex complete intersection surfaces with isolated singularities, equipped with the Jacobian Poisson structure. More generally we consider complete intersections of arbitrary dimension equipped with Hamiltonian flow with respect to the natural top polyvector field, which one should view as a degenerate Calabi-Yau structure. Our main result computes the coinvariants of functions under the Hamiltonian flow. In the surface case this is the zeroth Poisson homology, and our result generalizes those of Greuel, Alev and Lambre, and the authors in the quasihomogeneous and formal cases. Its dimension is the sum of the dimension of the top cohomology and the sum of the Milnor numbers of the singularities. In other words, this equals the dimension of the top cohomology of a smoothing of the variety. More generally, we compute the derived coinvariants, which replaces the top cohomology by all of the cohomology. Still more generally we compute theD-module which represents all invariants under Hamiltonian flow, which is a nontrivial extension (on both sides) of the intersection cohomology D-module, which is maximal on the bottom but not on the top. For cones over smooth curves of genus g, the extension on the top is the holomorphic half of the maximal extension.
منابع مشابه
The Genus 0 Gromov-Witten Invariants of Projective Complete Intersections
We describe the structure of mirror formulas for genus 0 Gromov-Witten invariants of projective complete intersections with any number of marked points and provide an explicit algorithm for obtaining the relevant structure coefficients. As an application, we give explicit closed formulas for the genus 0 Gromov-Witten invariants of Calabi-Yau complete intersections with 3 and 4 constraints. The ...
متن کاملLattice knot theory and quantum gravity in the loop representation
We present an implementation of the loop representation of quantum gravity on a square lattice. Instead of starting from a classical lattice theory, quantizing and introducing loops, we proceed backwards, setting up constraints in the lattice loop representation and showing that they have appropriate (singular) continuum limits and algebras. The diffeomorphism constraint reproduces the classica...
متن کاملIntersections of Tautological Classes on Blowups of Moduli Spaces of Genus-One Curves
We give two recursions for computing top intersections of tautological classes on blowups of moduli spaces of genus-one curves. One of these recursions is analogous to the well-known string equation. As shown in previous papers, these numbers are useful for computing genusone enumerative invariants of projective spaces and Gromov-Witten invariants of complete intersections.
متن کاملThe Genus One Gromov-Witten Invariants of Calabi-Yau Complete Intersections
We obtain mirror formulas for the genus 1 Gromov-Witten invariants of projective Calabi-Yau complete intersections. We follow the approach previously used for projective hypersurfaces by extending the scope of its algebraic results; there is little change in the geometric aspects. As an application, we check the genus 1 BPS integrality predictions in low degrees for all projective complete inte...
متن کاملAnalysis of the Impact of user’s Violations on the Saturation Flow Rate at Signalized Intersections
Accurate estimation of saturation flow rate is a prerequisite for accurate estimation of level of service and delays of signalized intersections. Saturation flow rate of intersections depends on many factors, including traffic behavior and culture. One of the important problems of traffic behavior in Iran is the violation of law at the physical region of intersections. The main purpose of this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014